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In connection with the a s sumpt ion  about  the poss ib i l i ty  of producing a gasdynamic  l a s e r  a t  
ro ta t iona l  t rans i t ions  of d ia tomic  molecules  [1, 2] and a gasdynamic  e o n d e n s e - l a s e r b y u s i n g  
the phenomenon of condensat ion to produce  the population invers ion  [3-5], a quanti tat ive 
descr ip t ion  of the kinet ics  of the ro ta t iona l  r e l axa t ion  of the s imp le s t  diatomic molecules  is 
neces sa ry .  In con t r a s t  to the t radi t ional  approach  in gasdynamics  and the theory  of t r a n s p o r t  
p r o c e s s e s ,  when one p a r a m e t e r  (the ro ta t iona l  r e l axa t ion  time) is used in the descr ip t ion  of 
ro ta t iona l  re laxa t ion ,  a subs tant ia l ly  m o r e  detai led descr ip t ion  a t  the population leve l  of the 
individual ro ta t iona l  s ta tes  is r equ i r ed  in solving spec t ro scopy  and l a s e r  phys ics  p rob l ems .  
Tais paper  is devoted to a theore t ica l  and expe r imen ta l  invest igat ion of the ro ta t iona l  r e l a x -  
ation of ni t rogen in a f r ee ,  low densi ty  jet  under  conditions when a substant ia l  nonequi l ibr ium 
holds in the ro ta t iona l  level  populat ions.  On the bas i s  of r e p r e s e n t a t i o n s  developed e a r l i e r  
[1, 6], a model  is cons t ruc ted  for a re lax ing  gas  which yields the magnitude of the population 
of individual ro ta t iona l  levels .  The se lec t ion of a molecu la r  ni t rogen f ree  je t  as a subject  for  
invest igat ion is explained by the fact  that  the gasdynamics  of such a flow has been studied 
well [7]. Moreover ,  a t  this t ime diagnostic methods have been developed to de te rmine  the 
molecule  concentra t ions  a t  many (k-<20) ro ta t iona l  levels  [8]; hence,  a je t  is a good objec t  
on which a detailed compar i son  between theory  and expe r imen t  can be made,  as is done in 
this paper .  Separat ion of the t r ans la t iona l  and ro ta t iona l  re laxa t ion  p r o c e s s e s  is allowed in 
the theore t i ca l  descr ip t ion  of the flow with re laxa t ion  studied in this pape r  on the bas i s  of 
the fact  that  the buildup of a Maxwell molecule  ve loc i ty  dis t r ibut ion because  of e las t ic  
col l is ions occurs  m o r e  rap id ly  than the r ed i s t r ibu t ion  of molecules  at  the ro ta t ional  levels  
because  of inelas t ic  col l is ions.  Such an approach  is apparen t ly  valid for molecu la r  hydrogen 
with a l a rge  value of the ro ta t iona l  quantum [9]. A model  with separa t ion  of the p r o c e s s e s  is 
hypothet ical  for ni t rogen molecules  whose ro ta t iona l  constant  is ~ 1/20 that  for hydrogen,  and 
is conf i rmed  in this paper  by compar ing  computat ions  with exper iment .  It is hence a s sumed  
that ro ta t ional  re laxa t ion  p roeeeds  inan  N 2 molecule  s t r e a m  with a known t e m p e r a t u r e ,  density,  
and ve loc i ty  dis t r ibut ion obtained f r o m  m e a s u r e m e n t s .  

1. Data on the ro ta t iona l  level  populations and the gasdynamic  p a r a m e t e r  distr ibution have been obtained 
under  conditions when the population kinetics is due to ro ta t iona l  r e l axa t ion  and the influence of the background 
[8], the condensat ion [4], and the effects  of fTeezing of the t rans la t iona l  t e m p e r a t u r e  can be neglected.  ~ae 
invest igat ion is p e r f o r m e d  in the low-dens i ty  gasdynamic  tube of the Institute of Thermophys ics ,  Siberian 
Branch of the Academy of Sciences of the USSR [10], provided with e l e c t r o n - b e a m  and m o l e c u l a r - b e a m  diag-  
nost ics  to m e a s u r e  the densi ty,  population of the ro ta t iona l  levels  [8], and the molecule  veloci ty  dis tr ibut ion 
function [11]. Sonic nozzles  of 0 . 5 - 5 - m m  d iame te r  we re  used with a ra t io  of the nozzle edge thickness to 
d i ame te r  l ess  than 0.02. The Reynolds  num ber  accord ing  to the c r i t i ca l  sect ion p a r a m e t e r s  was always 
g r e a t e r  than 100, which afforded a foundation for neglecting the influence of the boundary layer  in the nozzle. 
The s tagnat ion t e m p e r a t u r e  in the nozzle f o r e - c h a m b e r  was r o o m  t e m p e r a t u r e  (To= 292~ in all  t'ae ex p e r i -  
men t s ,  and the working gas was technical ly  pure  ni trogen.  

Because of in te rac t ion  of the gas em erg ing  f r o m  the nozzle  with the gas  in the surrounding space ,  a back-  
ground is fo rmed  f r o m  gas molecules  which pene t ra t e  into the core  of the je t  and the molecules  in the je t  
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colliding with these  la t te r  and losing the veloci ty  of d i rec ted  motion [12]. ~ a e  population dis tr ibut ion of the 
ro ta t iona l  levels  of the background molecu les  usua l ly  co r r e sponds  to a higher t e m p e r a t u r e  than the t e m p e r a -  
ture  in the jet .  Consequently,  the influence of  the background turns out to be mos t  not iceable  in population 
m e a s u r e m e n t s  for  the upper  levels ,  which a r e  des t royed  by a r e l axa t ion  p r o c e s s  during expansion.  As has 
been noted in [8], a m ode ra t e  quantity (~ 1%) of hot ter  gas ,  which is negl igible  in: the de terminat ion  o f  the low 
level  populat ions,  changes the population of the upper  levels  s ignif icantly.  Taking account  of the influence of 
the background was expe r imen ta l l y  accomplished~ To do this,  m e a s u r e m e n t s  were  p e r f o r m e d  a t  the m a x i m u m  
dis tance  f r o m  the nozzle  exi t ,  i .e . ,  where  the influence of the background is mos t  substant ia l ,  for different  
p r e s s u r e s  in the sur rounding  space  PH. Results  of the m e a s u r e m e n t s  a r e  p resen ted  in Fig. 1 for  p0d.--493 m m  
Hg (P0 is the s tagnat ion p r e s s u r e  and d .  is the d i ame te r  of the c r i t i ca l  nozz le  section),  where  Pk i s  the popu-  

lation of the k- th  ro ta t iona l  level  no rmal i zed  r e l a t i ve  to the gas  densi ty  ~ p~ and PH is the p r e s s u r e  in the 
X~ 

0 

sur rounding  space ,  m m  Hg. As is seen,  the influence of the background becomes  negligible for PH < 5"  10 -3 m m  
Hg for levels  with k<8 .  Let  us note that  the influence of the background for pod,<493 reduces  the s ize  o f  the 
j e t  sec t ion  sui table  for  c o m p a r i s o n  with computat ion.  

Supersa tura t ion  was achieved at  a l l  s tagnat ion p r e s s u r e s  a t  spacings x /d ,  f r o m  the nozzle  exit  (x is the 
spacing f r o m  the nozzle  exit) between 2.5 and 3.5; i .e . ,  condensat ion is poss ib le  in the s t r e a m  in the m e a s u r e -  
men t  domain.  2he population kinet ics  of ro ta t iona l  levels  in a condensing gas s t r e a m  differs  s ignif icantly f r o m  
that  when the ef fec t  of  condensat ion is  negligible [4, 5]. As is known the s i m i l a r i t y  p a r a m e t e r  for ro ta t iona l  
r e l axa t ion  in a homogeneous gas je t  a t  constant  s tagnation t e m p e r a t u r e  is pod*, but the condensat ion is podn; 
accord ing  to the data in [13], n=0 .55  for  ni t rogen.  Hence,  the change in d ,  for a constant  va lue  of pod. can 
check on the influence of condensation~ The r e s u l t  of such a check for  a m a x i m u m  value of Pod. is shown in 
Fig. 2a and b where  the population t e m p e r a t u r e s  of the  k - t h  level  a r e  p resen ted :  

T~ -~ --Bok(k -~ i ) / In  [goph/(g~po)1, 

B 0 is the ro ta t iona l  constant ,  Pk, gk a r e  the population and par t i t ion  function of the k-th state.  The m e a s u r e -  
ments  were  p e r f o r m e d  in four nozzles~ d , = 0 . 5 4 ,  2, 2.11, and 5 m m  (points 1-4, r espec t ive ly ) .  The data 
obtained for  ident ical  Pod, and di f ferent  nozzle  d i a m e t e r s  ag r ee ,  indicating the negligible influence of con- 
densation on the population kinet ics  for a given Pod, b u t a l s o  for values  of Pod, less  than mentioned. The 
tendency to an i n c r e a s e  i n t h e  populat ion t e m p e r a t u r e  with the inc rease  in stagnation p r e s s u r e ,  which is 
apparen t ly  a s soc ia t ed  with the ef fec t  of condensation,  should be noted. 

Dis turbance  of  the Maxwell dis t r ibut ion which takes  place  during expansion af fec ts  the densi ty  and 
veloci ty  sl ightly,  but r e s u l t s  in uncer ta in t ies  in giving the t rans la t iona l  t empe ra tu r e .  To c la r i fy  this question,  
the perpendicu la r  t e m p e r a t u r e  Tj.9 obtained by the molecu la r  beam method [11] (Fig. 3, points 2), the t r a n s -  
lat ional  t e m p e r a t u r e  T t e s t ima ted  by means  of the low level  population t e m p e r a t u r e s  [12] (the points 1), and 
the r e su l t s  of  an i sen t rop ic  computa t ion  for the r a t io  between the specif ic  heats  7= 1.4 (solid line) were  com-  
pared  for  P0d,=493.  As is seen,  for x /d ,  ~ 30 the pe rpend icu la r  t e m p e r a t u r e  and the es t imated  t e m p e r a t u r e  T t 
ag ree  within the l imits  of m e a s u r e m e n t  e r r o r .  For  values  of x /d ,  g r e a t e r  than those mentioned,  the data 
d iverge ,  which is caused by d i s tu rbance  of the Maxwell ve loci ty  dis tr ibut ion.  The i sen t ropic  t e m p e r a t u r e  for 
x / d , < 3 0  l ies somewhat  below the e x p e r i m e n t a l  r e s u l t s  in T t. But for  this pod, this d i f ference  is l ess  than 2~ 
and can hencefor th  be neglected.  

It can be expected that  for  low va lues  of Pod, the gas will expand as a monatomic  gas with cor responding  
values  of the veloci ty ,  densi ty ,  and t e m p e r a t u r e  because  of f reez ing  of the ro ta t iona l  re laxat ion.  As is seen,  
this e f fec t  is not detected for  pod, ~10 f r o m  r e s u l t s  of  measu r ing  the densi ty  p normal i zed  re la t ive  to the s t ag-  
nation densi ty P0 r e p r e s e n t e d  in Fig. 4 (values of x /d .  a r e  given by the digits).  The r e l a t i ve  densi ty P/Po at  a 
cons tant  d is tance f r o m  the nozzle  exi t  is independent of Pod.. It follows f r o m  the continuity equation that  
ro ta t iona l  and t rans la t iona l  r e l axa t ions  e x e r t  no not iceable  influence on the s t r e a m  veloci ty  a lso  in the Pod, 

r ange  cons idered .  

In addit ion to the expe r imen ta l  data,  r e s u l t s  of an i sen t rop ic  computat ion for 7 = 1.4 a r e  superposed  by 
solid l ines in Fig. 4. The expe r imen ta l  data and theore t ica l  computat ion do not ag ree .  Moreover ,  this d i f fe r -  
ence i n c r e a s e s  with the approach  to the nozzle  exit .  A s  is shown in [12], the computed and exper imen ta l  values  
of  the densi ty  ag ree  if  the locat ion of the sonic sect ion x / d , = 0  is taken shifted by 0.6 u p s t r e a m  and the d i a m e -  
t e r  of the c r i t i ca l  sec t ion  is t aken  a t  0.943 of the g e o m e t r i c  d i ame te r .  The s ame  co r rec t ion  is needed for  a g r e e -  
men t  between the m e a s u r e m e n t  data of  the s ta t ic  p r e s s u r e  [14] and is caused by the fact  that the location and 
ac tua l  shape of the sonic sect ion differ  f r o m  those given in the computat ion.  Agreemen t  between the computed 
and expe r imen ta l  data with the c o r r e c t i o n s  mentioned yields the r igh t  to give the densi ty i sen t ropica l ly .  
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For x /d ,  < 3.2 resul ts  of an isentropic computation were  approximated by a fourth power polynomial ,  and an 
approximate Sherman formula [14] for the Mach number was used w i t h  x /d ,  >3.2; furthermore,  the density 
and veloci ty  were calculated by means of known isentropic formulas.  ~ e  agreement  between the experimental 
data and the isentropic computation (with the correct ions mentioned) for P0d,=493 up to x / d , ~ 3 0  &fiords the 
pos sibility of using isentropic relationships even for the computation of the translational t e m p e r a ~ r e ,  but only 
for Pod, >493. For values  of Pod, l e s s  than that mentioned, the temperature obtained by extrapolating the popu- 
lation temperature to  the zero  value of the rotational quantum number is taken as the translational temperature.  

2. Let us consider the col l is ions between molecules  to be accompanied by inelastic p r o c e s s e s  

N:(kl) 4 = N..(k~) ~_ N2(kl -~- Akl) + N~(k~ -~ Ak~), 

where the numbers of  the rotational levels  of the ground e lectron and vibrational states of the N 2 molecule are 
written in the parentheses ; Akl, Ak2 are their change during the col l i s ion act. Such inelastic col l is ions  are 

319 



accompanied  by ene rgy  exchange between the t rans la t iona l  and ro ta t iona l  degrees  of  f reedom.  The quantum 
s t a t e s  of one (rt  p r o c e s s e s )  o r  both (rr  and r r '  p roces se s )  of the coll iding molecules  hence va ry .  Let us note 
that  the exchange r r '  p r o c e s s e s  (kl +Akl = k2; k2+~k2 = kl) do not r e s u l t  in a change in the s ta te  of the s y s t e m  of 
ro ta t iona l  levels  and, hence,  a r e  not cons ide red  hencefor th .  

Keeping the low gas t e m p e r a t u r e s  (T<200~ in mind in the reg ion  of c o m p a r i s o n  between e x p e r i m e n t  
and computat ion,  we l imi t  ou r se lves  jus t  to two-quantum r t  p r o c e s s e s  (k 1 -- • 2, k 2 = 0, or converse ly)  and two- 
quantum r r '  p r o c e s s e s  for  which Ak 1 =Ak2. 

The ro ta t iona l  t rans i t ion  probabil i t ies:P~,  k,+Ak, a r e  computed in an approx imat ion  of exponential  f o r m  of 
kt~h,+A~i 

the s p h e r i c a l  p a r t  of  the in te rac t ion  potent ia l  [6, 15[ 

V=exp (--~zR){B+B=o[P~(cos Xl)-~P~(cos X=)]+ B=2P2(cos X1)P=(cos X=)}, 
where  R is the spacing between the cen te r s  of  mass  of thecol l{ding molecuies ;  Xi, angle between the molecular  
axis  of the i- th molecule  and the line connecting the cen te r s  of mass  of the colliding molecules ;  P2(COS Xi), 
Legendre  polynomial  of second degree ;  ~, a p a r a m e t e r  cha r ac t e r i z i ng  the f o r m  of the potential .  The coeff i -  
c ients  B, B20 , B22 appea r  in the expansion of the s u m  of the in te rac t ion  potent ia ls  between the individual a toms  
in the molecu le  into s e r i e s  in the Legendre  polynomials  Pn(COS Xi) [15]. The coefficients  Bij in such an 
expansion a r e  jus t  c e r t a i n  p ropor t iona l i ty  f ac to r s .  

The two-quantum r t  and r r '  t rans i t ion  probabi l i t i es  computed in a quas i c l a s s i ca l  approx imat ion  a r e ,  
accord ing  to [15], 

.~.,_Vh'~:-F-~:(T ) = 4~'-~ {AZI~/~,~2 

X (1)(kl-+ k~ -- Akl, k,-+k~ -4- Ak~) V ~ ( A , j / 2  V'k-'T) '/3 exp [-- 3 (AiJ2 Vk-T) 2~3] (t -~ e~/2;~rf, (2.1) 

where  Ai) = u IAEI/~ct ]/2-~; A~. = Y, kBohk~(hk ~ + 2k~ A- i) ; k, Bol tzmann constant ;  /~, apparen t  m a s s  of the 
i = i , 2  

coll iding molecu les  ; Akt, Ak2= 0, • 2 ; T, gas t e m p e r a t u r e ;  li, Planck constant ;  
9 kl(kl - -  t) 

(kl --~ kl - -  2, k~) = -~  (2k, -- i) (2k,-.- t); 

5~00 k, (kl - -  t) (k~ § 1) (k 2 ~- 2) r 2, k~--~k~-~ 2)= O,43 (2k~__t)(2k ~_i)(2k _~ l ) ( 2 k ~  3)" 

The f requencies  of the two-quantum col l i s ional  ro ta t iona l  r t  and r r '  t rans i t ions  reduced  (to a tmospher ic  
p r e s s u r e )  for  the molecule  N 2 a r e  given in Fig. 5 for th ree  values  of the t e m p e r a t u r e  - 30, 70, and 150~ 

where  ~ is the total  number  of e las t ic  col l is ions of one molecule  in unit t ime  at  no rmal  p r e s s u r e  and ~/k is the 
r e l a t i ve  number  of  molecu les  in the s t a te  k. The ~ t  and ~ r '  a r e  shown in Fig. 5 by solid and dashed l ines ,  
r e spec t ive ly .  The gas -k ine t i c  sect ion was a s s u m e d  constant  and equal to ~g= 4~'~T 2, where  r is the effect ive 
rad ius  of  e las t i c  col l i s ion between molecules .  Values of  the quanti t ies  in (2.1) a r e  taken as follows for  a c o m -  

putat ion of the p robabi l i t i e s  : 
B = 2"t0-~~ -t- a~)etg. B~0 = 2all0 -~~ erg, 

o 
B~ = 0.2. t0-~~162 ~ egg, r = t.5 A. 

The o h a r a e t e r i s t i c  s ingu la r i t i es  of the graphs  r e p r e s e n t e d  a r e  a s soc ia t ed  with the d e c r e a s e  in the t rans i t ion  
f requency  as the t e m p e r a t u r e  d e c r e a s e s ,  with thei r  d e c r e a s e  with the growth of k for the upper  leve ls ,  and an 
opposi te  dependence in the low s ta tes .  Let  us a lso  note that  r e l a t i ve ly  l a rge  probabi l i t i es  of  the exchange p r o -  
c e s s e s  a t  the upper  ro ta t iona l  levels ,  ave raged  ove r  the r e l a t ive  populations of the levels  ~k, yield a m o d e r a t e  
contr ibut ion to the total  p robab i l i ty  of a change in a given s ta te  (especia l ly  for  l a rge  values  of ~) for  a Boltz-  
mann  dis t r ibut ion.  This is due to the sma l l  f r ac t ion  of pa r t i c l e s  ~/k and the acute  dependence of the probabi l i ty  
on the ene rgy  d e f e c t  of  the p r o c e s s .  

Unfortunately,  r e a l  values  of the coeff ic ients  in the an iso t rop ic  p a r t  of the potent ial  a r e  unknown up to 
this t ime  [16]. Uncer ta in ty  a lso  exis ts  in the choice  of the p a r a m e t e r  ~ which can have,  accord ing  to di f ferent  

o 1 
expe r imen ta l  r e s u l t s  [17], va lues  within the l imi t s  2-5 A- . In this connection,  i t  is meaningful  to speak about  
the dependence of the t rans i t ion  probabi l i t i es  on kl and k2. For a given t e m p e r a t u r e  this dependence will be 
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d e t e r m i n e d  by  the quant i ty  a .  On the o the r  hand, the ment ioned  u n c e r t a i n t i e s  in the se l ec t ion  o f  the i :nteraction 
poten t ia l  can be a l lowed in a c o m p a r i s o n  be tween  the r e s u l t s  o f  a kinet ic  computa t ion  o f  the ro t a t i ona l  r e l a x -  
a t ion  and e x p e r i m e n t a l  data ,  whereupon  va lues  o f  the quant i ty  ~r and the c o r r e c t i o n  f ac to r  C a r e  obta ined for  a l l  
the p robab i l i t i e s  : 

Ph,,k,+~,~, = CPh, h,y_~, �9 
k,.h,+a~, ~,;:h~ i a.,, 

Let  us note that  a l imi ta t ion  of the kinds of ine las t ic  p r o c e s s e s  by even va lues  of  Akl and Ak 2 a l so  c o r -  
r e s p o n d s  to s m a l l n e s s  of the molecu le  t r ans i t i on  p robab i l i t i e s  f r o m  one sp in -mod i f i ca t i on  to ano the r .  It is 
hence na tura l  to expec t  that  s y s t e m s  of even and odd ro t a t i ona l  levels  should v a r y  independent ly .  This l a t t e r  
a s s u m p t i o n  is ve r i f i ed  by the r e s u l t s  of  e x p e r i m e n t s  in both [8] and in this pape r ,  whe re  it  is de tec ted  that  the 
r a t i o  be tween the in tens i t ies  of  the even and odd l ines (2 : 1) is not d i s tu rbed  under  cool ing  dur ing  e~3ansion.  

We use  the k inet ic  equat ion  in the f o r m  

6p~rOt ~ div 9kV~ = Stk, 

where  Vk=V+Uk;  v, ve loc i ty  o f  the gas s t r e a m ;  Uk, diffusion s t r e a m  ve loc i t y  (or the mean  ve loc i ty  of  the 
mot ion  of  an individual  c o m p o n e n t  o f  the gas r e l a t i v e  to the cen t e r  o f  m a s s  of  a c e r t a i n  s m a l l  vo lume) ;  Stk, 
co l l i s ion  i n t e g r a l  o r  the r a t e  of  change  of  the n u m b e r  of p a r t i c l e s  in the s ta te  k pe r  unit  vo lume b e c a u s e  o f  
ine las t i c  co l l i s ions  to d e s c r i b e  the change  in populat ion in the ro t a t i ona l  s ta tes .  For  a o n e - d i m e n s i o n a l  flow, 
the fol lowing equat ion  can be obtained for the r e l a t i v e  populat ions  r lk=Pk/p:  

drlk pd / v (S t k /p"  ) q- (pvd,) 1 - ~  pD k , 
d z ~ -  

w h e r e  D k is the coe f f i c i en t  of  diffusion of mo lecu l e s  in the k- th  s ta te ,  Uk = - D k V  r/k; z = 0 .6+0 .943x /d ,  is the r e -  
duced c o o r d i n a t e  a l o n g t h e  flow axis .  It  fol lows f r o m  (2.2) tha t  fo r  an ideal  gas  w i tha  given f ield of  gasdyr~.mie p a r a m -  
e t e r s ,  the quant i ty  p0d.~-'P0d, c h a r a c t e r i z e s  the dependence  of  the popula t ion o n t h e  coo rd ina t e  r/k(Z ). F t u ~ h e r m o r e ,  
it can  be conc luded  f r o m  a c o m p a r i s o n  of  the f i r s t  and second  m e m b e r s  in the r i g h t  s ide of  (2.2) tha t  the  diffusion 
t e r m  can be neg lec ted  for  suf f ic ien t ly  l a rge  pod,.  In this ca se ,  the equat ion under  cons ide ra t i on  can  be con-  
ve r t ed  into the fol lowing:  

a~ k ~ c  A~ ~ Y nk,~,:.oP~.,,~,+~, - d--T ( ~]h,+a~,~%,+~, Ph,+~,,,k ~; (2.3) 
Ah2=0,_+_2 

~" i ,  (2,4) ~., ~% ~-- 
k 

w h e r e  the sum in the r i g h t  s ide of  (2.3) is the mode l  r e p r e s e n t a t i o n  for  the co l l i s ion  in t eg ra l  St, which sa t i s f ies  
the c o n s e r v a t i o n  laws for  the n u m b e r s  of  p a r t i c l e s  and the e n e r g i e s ;  r is the total  number  of e las t i c  co l l i s ions  
between m o l e c u l e s  pe r  unit  t ime.  As is shown in Sec. 1, va lues  of the dens i ty ,  ve loc i ty ,  and t r ans l a t i ona l  
t e m p e r a t u r e  can be given i s e n t r o p l c a l l y  as  funct ions  o f  the Mack number  M(z). Resul t s  of  an i s en t rop ie  c o m -  
puta t ion  of  M(z) for  the r a t i o  y = 1.4 be tween the spec i f i c  hea ts  w e r e  a p p r o x i m a t e d  by the dependences  

M (z) = i Jr ~ C~ (z)~ (0.8 < z < 2.8), 1 
M(z) - 3.65(z - -  0.4) ~ - -  0.822(z - -  0.4) ~ (z - -  0.4) L2 (z > 2.8), 

w h e r e  C 1 = 0 . 3 6 6 ,  C2=2.462 , C3= 1.515, C4=0.278.  
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The second formula  is taken f rom [14]. The t ranslat ion t empera tu re  for pod,=493 and 338 was computed 
by isentropic re la t ionships ,  while a co r rec t ion  t ak ingaccoun t  of the deviation of the measured  f rom the isen-  
tropic t empera tu re  was inser ted for pod,= 144. 

The sys t em of differential  equations (2.3) under the conditions (2.4) was solved numerica l ly  (on a 
B ~ M - 6  e lec t ronic  computer)  by the Runge-Kut t a  method with a given re la t ive  accuracy  of e = 10 -3. The 
number of equations was determined by the condition 3-<k-<k*. The value of the number k in the different 
ve rs ions  var ied  between 30 and 40 so as to diminish,  as possible ,  the influence of the Mboundary" of the block 
of equations on the resu l t  of the computation. The re la t ive  populations of the low levels were given by the 
t empera tu re  of the distr ibution Tk, equal to the t ranslat ional  t empera tu re  

~ : Ilogh/g o exp [--B,;k(k  ~, i)/Th] (k = i; 2), 

where the part i t ion functions gk = (2 + 1)gs; gs = z/3 for odd and gs = 93 for even values of k; the populations of the 
levels k >k* were computed by means of the Boltzmann law with a t empera ture  equal to the population t empera -  
ture  at  the upper levels of the sys tem k* and k* - 1. The initial distribution ~ was given by the equil ibrium 
distr ibution 

g~ exp ~ Be k (k + l ) /T  (z'j] . . . .  �9 

2"he magnitude of the initial value z0 was selected within the range 0.8-1.8. For each vers ion with a different 
value of Pod,, the c o r r e c t n e s s  of the select ion of z0 was checked by the ninsensitivity w of the solution to a 
diminution in z 0. 

Results of the computation a re  r epresen ted  in Fig.  6a and b in compar ison  with the experimental  data; 
curves  1-3 cor respond  to the computed data for pod. = 144.5,338,  and 493. Let us note that s imilar  dependences 
have qualitatively been obtained ea r l i e r  in both a computation [1] and exper iment  [8]. The sys tems  of even and 
odd levels re lax  independently, the population t empera tu res  of the odd levels v a r y  exactly as monotonically as 
the even, and their  values a r e  between adjacent  values of the population t empe ra tu r e s  of even k. The compu-  
tations and exper iments  show that the t ransi t ion f rom the  equil ibrium state in the nozzle stagnation chamber  to 
the nonequilibrium state  at  r emote  dis tances  f rom the nozzle exit occurs  with a disturbance of the Boltzmann 
population distr ibution for the rotat ional  levels.  It follows f rom the computations that a monotonic r i s e  in the 
population t empera tu res  with the increase  in k is caused by a diminution in the rotat ional  t ransi t ion probabil i -  
t ies with the inc rease  in k (see Fig. 5). A better  cor respondence  between computation and exper iment  holds 
for p0d.=493.  It is obtained for 0~=2 .~-I anda  cor rec t ion  factor  of C = 10. As Pod. va r ies ,  the computation 
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exhibits a fas ter  tendency to build up equi l ibr ium at the low levels (k < 7) than does experiment .  At the upper 
levels the tendencies of the experimental  and theoret ical  resu l t s  a re  opposite as Pod. changes (the data of the 
experiments  for Pod, = 493 lie higher than for lower values of Pod,). 

3. A cer ta in  difference between the exper imenta l  and theore t ica l  resu l t s  is re la ted  to the uncertainty in 
the t ransi t ion probabil i t ies  at  the low rotat ional  levels due to the limits of applicability of the quas ic lass ica l  
computation [6, 15]. The difference at  the upper levels can be associa ted  with both experimental  er=or  and 
with the influence of diffusion not taken into account,  which should contribute to an increase  in ~k of the upper 
states and, therefore ,  to an increase  in their  population t empera tu re  T k. The difference between the exper i -  
mental and computed data becomes  more  noticeable at  low tempera tures  T~20~ when the a t t ract ing pa r t  of 
the potential [15] can induce a contribution to the interact ion,  and the influence of condensation on the kinetics 
of rotat ional  t ransi t ions is possible .  

Let us examine the influence of diffusion in more  detail. For an es t imate ,  let us write the behavior of  
~k with the change in z approximately  as follows: 

TI~~ = [ + .p~ exp ( - -  ~kz), 

where ~,/3k, ~k a r e  constants ,  and l~k<0 (>0) for the lower (upper) levels of the sys tem.  Assuming the solution 
in a zero approximat ion to be determined just  by col l is ional  p r o c e s s e s  

d~l(hO) d 
d-z- = s t ,  

we obtain f rom this same equation in a f i rs t  approximation 

The express ion  Da = D = (ve>/12~V2pr ~ [18], where (v~) is the re la t ive  ve loc i ty  of the colliding molecules ,  
(vg> = V4kT/v~, is hence taken or  the diffusioncoeffieien~: while the approximate dependence T = T0(z+I)3(I'~Y) 
is taken for the temperature .  It follows f rom (3.1) that diffusion resu l t s  in an increase  in the population at the 
upper levels (ilk >0) and a diminution in the population at the lower levels (ilk<0), where as the t ranslat ional  
t empera ture  T diminishes the influence of the diffusion t e rm grows in comparison to the col l is ion integral,  
although we note that the values of the der ivat ives  d ~k/dz themselves  become small  in absolute value in the 
domain of z ~10 cal ibers  and the populations in this domain va ry  insignificantly. The absolute value of the 
co r rec t ion  t e r m  taking account of the influence of diffusion diminishes,  as is seen f rom (3.1), with the growth 
of the pa r ame te r  modeling the relaxat ion p rocess  Pod,; i .e. ,  the domain of values of Pod, within whese l imits 
the influence of diffusion in computations of the kinetics of the rotat ional  sys t em can be neglected can begin to 
be indicated. Thus for the modes considered in this paper,  according to est imate (3.1), the contribution of the 
diffusion te rms  is a quantity not exceeding 1%. 

In conclusion, let us note that the rotat ional  relaxat ion model constructed is equivalent, in prLnciple, to a 
hydrodynamic descr ipt ion with the solution of the hydrodynamics equations replaced by a field of the pa r ame te r s  
p, u, T. The solution of the kinetics equations in a one-dimensional  approximat ion is acceptable in this case 
since it is shown exper imental ly  and theoret ical ly  that the deviations of thef lew f rom one-dimenstonal i ty  are  
felt to the g rea tes t  degree in the domain of small  distances f rom the nozzle exit. On the other hand, the dis-  
tr ibution over  the rotat ional  levels turned out to be equil ibrium for the values of Pod, under considerat ion in 
this domain, and the numer ica l  computations s tar ted with z0 > 0.5. 

The authors note that the molecu la r -beam measu remen t  data were obtained by R. G. Sharafutdinov and 
A. E. Zarvin and a re  used with the kind ag reement  of the lat ter .  
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